We know the climate is warming and this is changing some aspects of storms, but we have little knowledge of storm characteristics beyond intensity, which limits our understanding of storms overall. In this study, we apply a cell-tracking algorithm to 20 years of radar data at a mid-latitude coastal-site (Sydney, Australia), to establish a regional storm climatology. The results show that extreme storms in terms of translation-speed, size and rainfall intensity usually occur in the warm season, and are slower and more intense over land between ~10am and ~8pm (AEST), peaking in the afternoon. Storms are more frequent in the cold season and often initiate over the ocean and move northward, leading to precipitation mostly over the ocean. Using clustering algorithms, we have found five storm types with distinct properties, occurring throughout the year but peaking in different seasons. While overall rainfall statistics don't show any link to climate modes, links do appear for some storm types using a multivariate approach. This climatology for a variety of storm characteristics will allow future study of any changes in these characteristics due to climate change.