The kinetics of alkaline fading of crystal violet (CV) has been studied by UV spectrophotometry and microcalorimetry in the critical binary solution of 2-butoxyethanol + water at the initial reaction stage and various temperatures. It was found that the first-order rate constants obtained from these two methods are well accorded with each other, and the temperature dependence of the rate constant obeyed the Arrhenius equation in a temperature region far from the critical point. The critical slowing down was detected by both methods near the critical point. A simple empirical crossover model was proposed and used to analyze the experimental data to obtain the critical exponents, which were 0.158 ± 0.013 and 0.133 ± 0.012 from UV spectrophotometry and microcalorimetry, respectively, and the former was in good agreement with the theoretical prediction of 0.151. The slight lower value derived from microcalorimetry was attributed to the stirring in the microcalorimeter, which weakened the critical reduction of the diffusion coefficient.