RÉSUMÉLes performances remarquables des détecteurs fonctionnant à très basse température ont franchi les limites inhérentes aux détecteurs conventionnels à semiconducteur ou à scintillateur. Ceci s'explique par les principes physiques de détection exploités par les différentes technologies développées aujourd'hui. L'élégance de ces technologies est de mettre en jeu la The performance of low temperature detectors has far exceeded the inherent limits of conventional semiconductor and scintillation detectors. This stems from the detection physics used by the different technologies being developed nowadays. The neat idea behind these technologies is to split the energy of an incident photon or particle over a very large number of quanta, larger by several orders of magnitude than in classical detectors. Hence low statistical fluctuations on the energy determination for an individual interaction lead to energy detection thresholds and energy resolutions better by one or two orders of magnitude. An additional asset is that detection efficiency is not limited at low energies as it is the case for germanium or silicon detectors. Low temperature detectors are being developed and used in numerous applications (imaging arrays for astrophysics, dark matter and neutrino physics, atomic, nuclear and particle physics, material science, biology and medical science, …) covering detection of different nature of particles over a very large energy range (sub-millimetre, infra-red, UV, X-rays, gamma photons, but also beta, alpha particles, and bio-molecules). Introduction of automated cryogen-free refrigerators on the market opens new prospects of industrial applications for these detectors of hitherto unequalled performance.