Vehicular Edge Computing (VEC) brings cloud infrastructure to the vehicular edge, resulting in better performances and avoiding network congestions. In this workin-progress paper, the benefits of edge computing over cloud computing are discussed in a vehicular environment context, and they are leveraged by creating a Cooperative, Connected and Automated Mobility (CCAM) performance measurement framework. This measurement tool can follow vehicles by moving across different devices, enabling measurements on Key Performance Indicators (KPIs) using edge computing. We already used this tool to evaluate latencies of both a stationary and driving vehicle, moving over the Smart Highway testbed in Antwerp, Belgium. When driving, smart-edge-following algorithms can be deployed to choose the nearest Road Side Unit (RSU) using broadcasted Cooperative Awareness Messages (CAMs) of the vehicle. While driving on the Smart Highway, the application monitors important performance metrics such as throughput, latency, packet loss, packet delivery rate and more. We compare short-range vehicular communications technologies on the Smart Highway (ITS-G5 and LTE-V2X PC5) against the cellular. Our preliminary results demonstrate the benefits in terms of latency by using short-range communications technologies in VEC applications. These results validate that moving applications to the edge is truly beneficial, since our results confirmed up to 90% lower latency using ITS-G5, up to 50% using LTE-V2X PC5. Future deployments of 5G in the Smart Highway are planned, which would further improve the performance edge computing technologies.