Abstract:With declining system costs and assuming a short energy payback period, photovoltaics (PV) should, at face value, be able to make a meaningful contribution to reducing the emission intensity of Australia's electricity system. However, solar is an intermittent power source and households remain completely dependent on a -less than green‖ electricity grid for reliable electricity. Further, much of the energy impact of PV occurs outside of the conventional boundaries of PV life-cycle analyses (LCA). This paper examines these competing observations and explores the broader impacts of a high penetration of household PV using Melbourne, Victoria as a reference. It concludes that in a grid dominated by unsequestered coal and gas, PV provides a legitimate source of emission abatement at high, but declining costs, with the potential for network and peak demand support. It may be technically possible to integrate a high penetration of PV, but the economic and energy cost of accommodating high-penetration PV erodes much of the benefits. Future developments in PV, storage, and integration technologies may allow PV to take on a greater long term role, but in the time horizon usually discussed in climate policy, a large-scale expansion of household PV may hinder rather than assist deep cuts to the emission intensity of Australia's electricity system.