Abstract-To assist the vulnerability identification process, researchers proposed prediction models that highlight (for inspection) the most likely to be vulnerable parts of a system. In this paper we aim at making a reliable replication and comparison of the main vulnerability prediction models. Thus, we seek for determining their effectiveness, i.e., their ability to distinguish between vulnerable and non-vulnerable components, in the context of the Linux Kernel, under different scenarios. To achieve the above-mentioned aims, we mined vulnerabilities reported in the National Vulnerability Database and created a large dataset with all vulnerable components of Linux from 2005 to 2016. Based on this, we then built and evaluated the prediction models. We observe that an approach based on the header files included and on function calls performs best when aiming at future vulnerabilities, while text mining is the best technique when aiming at random instances. We also found that models based on code metrics perform poorly. We show that in the context of the Linux kernel, vulnerability prediction models can be superior to random selection and relatively precise. Thus, we conclude that practitioners have a valuable tool for prioritizing their security inspection efforts.