Ocean acidification (OA) will have a predominately negative impact on marine animals sensitive to changes in carbonate chemistry. Coastal upwelling regions, such as the Northwest coast of North America, are likely among the first ecosystems to experience the effects of OA as these areas already experience high pH variability and naturally low pH extremes. Over the past decade, pH off the Olympic coast of Washington has declined an order of magnitude faster than predicted by accepted conservative climate change models. Resource managers are concerned about the potential loss of intertidal biodiversity likely to accompany OA, but as of yet, there are little pH sensitivity data available for the vast majority of taxa found on the Olympic coast. The intertidal zone of Olympic National Park is particularly understudied due to its remote wilderness setting, habitat complexity, and exceptional biodiversity. Recently developed methodological approaches address these challenges in determining organism vulnerability by utilizing experimental evidence and expert opinion. Here, we use such an approach to determine intertidal organism sensitivity to pH for over 700 marine invertebrate and algal species found on the Olympic coast. Our results reinforce OA vulnerability paradigms for intertidal taxa that build structures from calcium carbonate, but also introduce knowledge gaps for many understudied species. We furthermore use our assessment to identify how rocky intertidal communities at four long-term monitoring sites on the Olympic coast could be affected by OA given their community composition. the park's general management plan (NPS, 2007). The 65-mile coastline is a UNESCO Biosphere Reserve and World Heritage Site that hosts one of the most biodiverse assemblages of marine invertebrates and seaweeds along the west coast of North America (Schoch et al., 2006). The intertidal zone is comprised of rocky reefs, sandy beaches, and cobble boulder fields and is valued regionally and nationally for its ecological, economic, and cultural significance. The loss of species in the intertidal zone that rely on a particular pH threshold or the availability of CO 3 2− could fundamentally alter one or all of these interests (Cooley et al., 2009;Lynn et al., 2013) and have resounding reverberations for marine food webs (Gaylord et al., 2015). Over the past decade, ocean pH off the Olympic coast has declined an order of magnitude faster than predicted by accepted conservative climate change models (Feely et al., 2004;Wootton and Pfister, 2012) and has impacted marine aquaculture in the region (Barton et al., 2015). These observations spurred the Governor of Washington to form a Blue Ribbon Panel on Ocean Acidification. The panel's report (Washington Department of Ecology, 2012) recommended expanded pH monitoring and an assessment of marine resource sensitivity to OA. Although OA-associated impacts are documented for several cosmopolitan species, a major limitation for resource managers is determining how those impacts will be experience...