Abstract:Biomarkers are measurable changes associated with the disease. Without the control of homeostatic mechanisms, urine accumulates systemic body changes and thus serves as an excellent early biomarker source. However, urine is affected by many factors other than disease. Although many candidate biomarkers have been identified in animal models, a large number of clinical samples might still be required for the disease related changes. A self-controlled study should be able to avoid the interferences of individual … Show more
“…Proteins can be used as diagnostic and prognostic markers in patients with brain tumor. They can be detected both in glioblastoma tissues [120] and in liquid matrices: blood and its derivatives [107,141,142], cerebrospinal fluid (CSF) [108], and urine [69]. The main approach currently used for searching for glioblastoma multiforme protein tumor markers is the study of the proteomic profile (bottom-up or top-down) [66] coupled with gene expression study [72,143].…”
Section: Perspective Biomarkersmentioning
confidence: 99%
“…Molecular alterations responsible for glioblastoma carcinogenesis [66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85]. …”
Glioblastoma multiforme is the most aggressive malignant tumor of the central nervous system. Due to the absence of effective pharmacological and surgical treatments, the identification of early diagnostic and prognostic biomarkers is of key importance to improve the survival rate of patients and to develop new personalized treatments. On these bases, the aim of this review article is to summarize the current knowledge regarding the application of molecular biology and proteomics techniques for the identification of novel biomarkers through the analysis of different biological samples obtained from glioblastoma patients, including DNA, microRNAs, proteins, small molecules, circulating tumor cells, extracellular vesicles, etc. Both benefits and pitfalls of molecular biology and proteomics analyses are discussed, including the different mass spectrometry-based analytical techniques, highlighting how these investigation strategies are powerful tools to study the biology of glioblastoma, as well as to develop advanced methods for the management of this pathology.
“…Proteins can be used as diagnostic and prognostic markers in patients with brain tumor. They can be detected both in glioblastoma tissues [120] and in liquid matrices: blood and its derivatives [107,141,142], cerebrospinal fluid (CSF) [108], and urine [69]. The main approach currently used for searching for glioblastoma multiforme protein tumor markers is the study of the proteomic profile (bottom-up or top-down) [66] coupled with gene expression study [72,143].…”
Section: Perspective Biomarkersmentioning
confidence: 99%
“…Molecular alterations responsible for glioblastoma carcinogenesis [66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85]. …”
Glioblastoma multiforme is the most aggressive malignant tumor of the central nervous system. Due to the absence of effective pharmacological and surgical treatments, the identification of early diagnostic and prognostic biomarkers is of key importance to improve the survival rate of patients and to develop new personalized treatments. On these bases, the aim of this review article is to summarize the current knowledge regarding the application of molecular biology and proteomics techniques for the identification of novel biomarkers through the analysis of different biological samples obtained from glioblastoma patients, including DNA, microRNAs, proteins, small molecules, circulating tumor cells, extracellular vesicles, etc. Both benefits and pitfalls of molecular biology and proteomics analyses are discussed, including the different mass spectrometry-based analytical techniques, highlighting how these investigation strategies are powerful tools to study the biology of glioblastoma, as well as to develop advanced methods for the management of this pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.