The use of electromagnetism and the design of antennas in the field of medical imaging have played important roles in clinical practice. Specifically, magnetic resonance imaging (MRI) utilizes transmission and reception antennas, or coils, that are tuned to specific frequencies depending on the strength of the main magnet. Clinical scanners operating at 3 Teslas (T) function at a frequency of 127 MHz, while research scanners at 7 T operate at 300 MHz. An 11.74 T scanner for human imaging, which is currently under development, will operate at a frequency of 500 MHz. MRI allows for the high‐definition scanning of biological tissues, making it a valuable tool for enhancing images acquired with positron emission tomography (PET). PET is an imaging modality used to evaluate the metabolism of organs or cancers. With recent advancements in the development of portable PET systems that can be integrated into any MRI scanner, we propose the design based on electromagnetic simulations of a triple‐tuned array of dipole antennas to operate at 127, 300, and 500 MHz. This array can be attached to the PET inset and used in 3, 7, or 11.74 T scanners.