Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Bistable states for a sufficiently large amount of liquid can appear in an eccentric capillary due to the eccentricity effect under zero gravity (J. Fluid Mech, vol. 863, 2019, pp. 364–385). A transverse body force, which can lead to rich physical phenomena of a droplet, may lead to multistable states (bistability, tristability and the likes) of a sufficiently large amount of liquid in a capillary. We theoretically investigate this situation in a circular or annular capillary tube under a transverse body force. The results show that there can be tristable (bistable) states in an annular (circular) capillary tube: an occluding configuration and two (one) non-occluding configurations. In the annular tube, for one of the non-occluding configurations, the gas–liquid interface in the middle cross-section of the droplet meets both the inner and outer walls of the tube (bridging configuration); for the other non-occluding configuration, the gas–liquid interface in the middle cross-section of the droplet does not meet the inner wall (non-bridging configuration). The multistability is dependent on the Bond number, the contact angle and the cross-sectional shape. The multistability cannot occur for a zero or very large Bond number. A hydrophilic condition (the contact angle smaller than 90°) contributes to the non-occluding non-bridging configuration, while the hydrophobic condition (the contact angle larger than 90°) contributes to the non-occluding bridging configuration (only for the annular capillary). For the annular capillary with a not-so-large contact angle, increasing the inner-to-outer radius ratio can lead to a larger range of Bond numbers, in which the multistability occurs.
Bistable states for a sufficiently large amount of liquid can appear in an eccentric capillary due to the eccentricity effect under zero gravity (J. Fluid Mech, vol. 863, 2019, pp. 364–385). A transverse body force, which can lead to rich physical phenomena of a droplet, may lead to multistable states (bistability, tristability and the likes) of a sufficiently large amount of liquid in a capillary. We theoretically investigate this situation in a circular or annular capillary tube under a transverse body force. The results show that there can be tristable (bistable) states in an annular (circular) capillary tube: an occluding configuration and two (one) non-occluding configurations. In the annular tube, for one of the non-occluding configurations, the gas–liquid interface in the middle cross-section of the droplet meets both the inner and outer walls of the tube (bridging configuration); for the other non-occluding configuration, the gas–liquid interface in the middle cross-section of the droplet does not meet the inner wall (non-bridging configuration). The multistability is dependent on the Bond number, the contact angle and the cross-sectional shape. The multistability cannot occur for a zero or very large Bond number. A hydrophilic condition (the contact angle smaller than 90°) contributes to the non-occluding non-bridging configuration, while the hydrophobic condition (the contact angle larger than 90°) contributes to the non-occluding bridging configuration (only for the annular capillary). For the annular capillary with a not-so-large contact angle, increasing the inner-to-outer radius ratio can lead to a larger range of Bond numbers, in which the multistability occurs.
A typical culinary setting involves liquid condiments with different constitutive behaviors stored in jars, bottles, pitchers, or spouts. In the dynamic kitchen environment, handling these condiments might require pouring, drizzling, squeezing, or tapping, demonstrating the interplay of the container geometry, the fluid properties, and the culinary expertise. There is, of course, the occasional accidental toppling. We investigate the combined effects of surface properties, fluid properties, and confinement dimensions on the short-time spilling or pouring dynamics of a toppled cuvette. While attesting to the fact that smaller cuvettes (which can be termed as capillaries as well) do not spontaneously spill, larger cuvettes exhibit spilling dynamics that are dependent on the surface property, fluid viscosity, and flow rheology. For Newtonian liquids, it is observed that the spilling dynamics are determined largely by the coupling of viscous and gravity forces with surface properties, inducing non-intuitive behavior at higher conduit dimensions. The inclusion of rheology for non-Newtonian liquids in the soup makes the spilling dynamics not only an interplay surface and fluid properties but also a function of meniscus retraction demarcating a “splatter” of three regimes “not spilling,” “on the verge of spilling,” and “spontaneous spilling.” We not only delineate the interactions leading to meniscus motion but also provide a mapping on whether or not a container would spill if it is momentarily toppled and then immediately returned to upright position. This study aids in understanding the fascinating physics of fluid pouring dynamics and could lead to new kitchen, biomedical, and industrial technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.