Direct ethanol fuel cells (DEFCs) are one of the resourceful and sustainable technologies for energy applications. Ethanol oxidation has been used to construct cost-effective and proficient electrocatalysts to substitute noble-based electrocatalysts like Rh, Pd, Ir, and Ag. Here in, we have presented a surface modification approach of doping a crucial oxophilic character metal onto a transition metal with carbon support. Noble metal-free cobalt−bismuth bimetallic nanoparticledecorated reduced graphene oxide (Co−Bi@rGO) electrocatalysts were fabricated for enhanced ethanol oxidation reaction from their synergetic effect of rGO, Co, and Bi. A highly active, cost-effective, and efficient approach has been developed for the preparation of Co−Bi@rGO (Co NPs; ∼2 nm), initially Bi@rGO (Bi NPs@rGO; ∼50 nm), by a simple reduction method followed by Co, by Galvanic exchange of Bi atoms with Co. The as-synthesized nanocomposites were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and BET surface area measurement studies. Cyclic voltammetric studies show an ultralow onset potential of 0.28 V with a high current density of 10.25 mA/cm 2 , having a higher enhancement factor for Co−Bi@rGO compared to other individuals, including Bi NPs, Bi@rGO, and rGO under similar electrolyte conditions, which could be due to their synergetic cooperative interactions at electrified interfaces. Combined results from chronoamperometry (i−t) and electrochemical impedance spectroscopy show that Co−Bi@rGO is highly durable and sensitive toward the ethanol oxidation reaction compared to individual counterparts. This work also provides the noble metal-free bimetallic electrocatalysts for ethanol oxidation and assists in hydrogen production from an agricultural base.