Recent years have witnessed surging demand for bone repair/regeneration implants due to the increasing number of bone defects caused by trauma, cancer, infection, and arthritis worldwide. In addition to bone autografts and allografts, biomaterial substitutes have been widely used in clinical practice. Personalized implants with precise and personalized control of shape, porosity, composition, surface chemistry, and mechanical properties will greatly facilitate the regeneration of bone tissue and satiate the clinical needs. Additive manufacturing (AM) techniques, also known as 3D printing, are drawing fast growing attention in the fabrication of implants or scaffolding materials due to their capability of manufacturing complex and irregularly shaped scaffolds in repairing bone defects in clinical practice. This review aims to provide a comprehensive overview of recent progress in the development of materials and techniques used in the additive manufacturing of bone scaffolds. In addition, clinical application, pre-clinical trials and future prospects of AM based bone implants are also summarized and discussed.