Mangrove forests in tropics coastlines area play an essential role in carbon fixation and carbon storage. Mangrove forests in coastal areas are very effective and efficient in reducing the concentration of carbon dioxide (CO2) in the atmosphere because mangroves can absorb CO2 through photosynthesis by diffusion through stomata and then store carbon in the form of biomass. With the lack of efforts to manage mangrove forests, it needs to be developed so that forest functions can be utilized sustainably. This paper describes examining the use of remote sensing data, particularly dual-polarization ALOS-2 PALSAR-2 data, with the primary objective to estimate the carbon stock of mangrove forests in Benoa Bay, Bali. The carbon stock was estimated by analyzing HV Polarization, Above Ground Biomass (AGB), and ground biomass (BGB). The total carbon stock was obtained by multiplying the total biomass with the organic carbon value of 0.47. The potential carbon stock in the mangrove Benoa Bay area is 209,027.28 ton C to absorb carbon dioxide (CO2) of 767,130.11 ton CO2 Sequestration same with 3.87 X 1011 bottles in 2015 and 204.422,59 ton C to absorb carbon dioxide (CO2) of 750.230,93 ton CO2 Sequestration same with 3.79 x 1011 bottles in 2020.