Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The article contains sections titled: 1. Introduction 2. Fundamental Synthetic Routes for Organosilicon Compounds 2.1. Direct Synthesis of Organohalosilanes 2.2. Grignard Synthesis 2.3. Syntheses with Alkali Metals 2.4. Addition Reactions (Hydrosilylation) 2.5. Substitution Reactions of Si−H Bonds 2.6. Coproportionation and Disproportionation 3. Silicon‐Functional Organosilicon Compounds 3.1. Halo‐ and Pseudohalosilanes 3.2. Alkoxy‐ and Aryloxysilanes 3.3. Acyloxysilanes 3.4. Oximino‐ and Aminoxysilanes 3.4.1. (Alkylamino)alkylsilanes 3.5. Organofunctional Organosilicon Compounds 4. Vinyl and Other Alkenyl Compounds 4.1. Organohalogenated Compounds 4.2. Nitrogen‐Containing Compounds 4.3. Cyanoalkyl Compounds 4.3.1. Organic Amino Compounds 4.3.2. Other Nitrogen Compounds 4.3.3. Organosulfur Compounds 4.4. Mercapto and Sulfidic Organofunctions 4.4.1. Compounds Containing Sulfur ‐ Oxygen Groups 4.4.2. Oxygen‐Containing Compounds 4.5. Epoxy and Other Oxy Compounds 4.5.1. Acrylates and Other Ester Functions 4.5.2. Acid Anhydrides and Other Carboxy Groups 4.5.3. Other Organofunctions 4.6. Other Organosilanes 5. Tetraorganosilanes 5.1. Production 5.1. Polysilanes 5.2. Uses 6. Silylating Agents 6.1. Silanes as Protecting Groups 6.1. Organosilicon Pharmaceuticals 6.1. Silanes for Modification of Organic Polymers 6.1.1. Cross‐Linking of Polyethylene 6.1.1. Donor Silanes 6.2. Silane Coupling Agents 6.2.1. Mode of Action 6.3. Analysis 6.4. Toxicology and Environmental Aspects 7. Economic Aspects 8. References
The article contains sections titled: 1. Introduction 2. Fundamental Synthetic Routes for Organosilicon Compounds 2.1. Direct Synthesis of Organohalosilanes 2.2. Grignard Synthesis 2.3. Syntheses with Alkali Metals 2.4. Addition Reactions (Hydrosilylation) 2.5. Substitution Reactions of Si−H Bonds 2.6. Coproportionation and Disproportionation 3. Silicon‐Functional Organosilicon Compounds 3.1. Halo‐ and Pseudohalosilanes 3.2. Alkoxy‐ and Aryloxysilanes 3.3. Acyloxysilanes 3.4. Oximino‐ and Aminoxysilanes 3.4.1. (Alkylamino)alkylsilanes 3.5. Organofunctional Organosilicon Compounds 4. Vinyl and Other Alkenyl Compounds 4.1. Organohalogenated Compounds 4.2. Nitrogen‐Containing Compounds 4.3. Cyanoalkyl Compounds 4.3.1. Organic Amino Compounds 4.3.2. Other Nitrogen Compounds 4.3.3. Organosulfur Compounds 4.4. Mercapto and Sulfidic Organofunctions 4.4.1. Compounds Containing Sulfur ‐ Oxygen Groups 4.4.2. Oxygen‐Containing Compounds 4.5. Epoxy and Other Oxy Compounds 4.5.1. Acrylates and Other Ester Functions 4.5.2. Acid Anhydrides and Other Carboxy Groups 4.5.3. Other Organofunctions 4.6. Other Organosilanes 5. Tetraorganosilanes 5.1. Production 5.1. Polysilanes 5.2. Uses 6. Silylating Agents 6.1. Silanes as Protecting Groups 6.1. Organosilicon Pharmaceuticals 6.1. Silanes for Modification of Organic Polymers 6.1.1. Cross‐Linking of Polyethylene 6.1.1. Donor Silanes 6.2. Silane Coupling Agents 6.2.1. Mode of Action 6.3. Analysis 6.4. Toxicology and Environmental Aspects 7. Economic Aspects 8. References
Ausgangspunkt des Polymer‐Pyrolyse‐Verfahrens stellen hochreine monomere Precursor dar, die über Additions‐ oder Kondensationsreaktionen polymerisiert und durch Pyrolyse unter Schutzgasatmosphäre in amorphe Keramiken überführt werden. Durch Tempern bei erhöhter Temperatur können die Keramiken zur Kristallisation gebracht werden. Die Pyrolyse von Polysilanen und Polycarbosilanen ergibt Si‐C‐Keramiken, Polysiloxane werden in Si‐C‐O‐Keramiken und Polysilazane bzw. Polysilylcarbodiimide in Si‐C‐N‐ oder Si3N4‐Keramiken umgewandelt. Durch Kombination verschiedener Precursormaterialien lassen sich über die Polymer‐Pyrolyse‐Route Multikomponentenkeramiken außerordentlicher Homogenität und mit vielfältigen Eigenschaften herstellen. Die erreichbaren keramischen Ausbeuten liegen je nach Precursorsystem bei bis zu 90%. Die beschriebenen Keramiken finden Anwendungen in Form monolithischer Formkörper, als Fasern oder faserverstärkte Verbundwerkstoffe oder als über Dip‐Coating hergestellte Schichten.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.