The article contains sections titled: 1. Introduction 2. Fundamental Synthetic Routes for Organosilicon Compounds 2.1. Direct Synthesis of Organohalosilanes 2.2. Grignard Synthesis 2.3. Syntheses with Alkali Metals 2.4. Addition Reactions (Hydrosilylation) 2.5. Substitution Reactions of Si−H Bonds 2.6. Coproportionation and Disproportionation 3. Silicon‐Functional Organosilicon Compounds 3.1. Halo‐ and Pseudohalosilanes 3.2. Alkoxy‐ and Aryloxysilanes 3.3. Acyloxysilanes 3.4. Oximino‐ and Aminoxysilanes 3.4.1. (Alkylamino)alkylsilanes 3.5. Organofunctional Organosilicon Compounds 4. Vinyl and Other Alkenyl Compounds 4.1. Organohalogenated Compounds 4.2. Nitrogen‐Containing Compounds 4.3. Cyanoalkyl Compounds 4.3.1. Organic Amino Compounds 4.3.2. Other Nitrogen Compounds 4.3.3. Organosulfur Compounds 4.4. Mercapto and Sulfidic Organofunctions 4.4.1. Compounds Containing Sulfur ‐ Oxygen Groups 4.4.2. Oxygen‐Containing Compounds 4.5. Epoxy and Other Oxy Compounds 4.5.1. Acrylates and Other Ester Functions 4.5.2. Acid Anhydrides and Other Carboxy Groups 4.5.3. Other Organofunctions 4.6. Other Organosilanes 5. Tetraorganosilanes 5.1. Production 5.1. Polysilanes 5.2. Uses 6. Silylating Agents 6.1. Silanes as Protecting Groups 6.1. Organosilicon Pharmaceuticals 6.1. Silanes for Modification of Organic Polymers 6.1.1. Cross‐Linking of Polyethylene 6.1.1. Donor Silanes 6.2. Silane Coupling Agents 6.2.1. Mode of Action 6.3. Analysis 6.4. Toxicology and Environmental Aspects 7. Economic Aspects 8. References
In the title compound, C13H18N2O5S, the benzene ring and the acetamide group are almost coplanar [dihedral angle = 5.6 (3)°], and the amine group projects almost vertically from this plane [C—C—S—N = −84.5 (7)°]. A short intramolecular C—H⋯O contact occurs. In the crystal, O—H⋯O, N—H⋯O and N—H⋯(O,O) hydrogen bonds lead to a three-dimensional network. One of the methyl groups of the isopropyl residue is disordered over two orientations in a 0.747 (16):0.253 (16) ratio.
Recently, graphitic carbon nitride (g-C 3 N 4 ) has been explored as a peroxidase-like catalyst for the nonenzymatic colorimetric detection of H 2 O 2 . In this study, we have developed a simple, low cost, and eco-friendly hydrogen bond assisted soft template method of zinc ions doping in mesoporous graphitic-carbon-nitride (Zn-mpg-C 3 N 4 ) thin nanosheets. Morphology and composition of prepared samples were determined by different characterization techniques. PEG-1500 was beneficial to enhance the porosity and surface area of g-C 3 N 4 , whereas zinc loading in the framework of g-C 3 N 4 resulted in the increase in electrical properties. The peroxidase-like catalytic activity of samples was investigated and compared based on the development of blue reaction mixture by the oxidation reaction between 3,3′,5,5′-tetramethylbenzidine and hydrogen peroxide (H 2 O 2 ) through the colorimetric method. The as-prepared 10% Zn-mpg-C 3 N 4 has shown higher peroxidase-like activity as compared to natural HRP, g-C 3 N 4 , and mpg-C 3 N 4 . This enhanced peroxidase-like activity was attributed to the thin structured nanosheets, higher specific surface area, outstanding electron transfer ability, increased band gap, and increased in charge separation of the catalyst through the direct zinc ions doping modification. The steady-state kinetics mechanism was investigated by using Michaelis− Menten kinetics, and it was found that the reaction followed a ping-pong mechanism. This outstanding catalytic activity permitted us to design a rapid and convenient colorimetric sensing method to detect H 2 O 2 . Under the optimized condition, the developed sensor exhibited a linear range of 10−2000 μM (R 2 = 0.9981), limit of detection of 1.4 μM, and limit of quantification of 3.0 μM for H 2 O 2 detection. In view of advantages compared with previous methods such as simple, facile operation, cost-effectiveness, eco-friendliness, naked eye observation, and rapid response, the developed sensor possesses huge potential and is a promising candidate for enzyme mimic sensing of H 2 O 2 in environmental and biological samples.
Raumisomere DicarbonyldihaIogenoruthenium(1X)-Komplexe, Ru(CO)2L2X2, mit ein-und zweizahligen Ligandenl, H Be; dcr Reaktion von polymerem Rutheniumcarbonyljodid, [Ru(C0)2J2],, mit einer Reihe ein-und zweizahliger Donorliganden (L bzw. L"}, namlich Aminen, Organylen des Phosphors und seiner Homologen sowie Organochalkogeniden, entstehen in benzolischer L6sung raumisomere Verbindungen der allgemeinen Zusammensetzung Ru(CO)zL2Xz bzw. Ru(C0)zL"Xz (X = J); nur ausnahmsweise treten dic ebenfdlls diamagnetischen und nichtionogenen Monocarbonylderivate Ru(CO)L,Xz auf. Die isomeren Dicarbonyle sind in Farbe, Loslichkeit und Schmelzverhalten charakteristisch unterschieden. Eine eindeutige Entscheidung zwischcn den moglichen 5 Strukturtypen 1aRt sich unter Beriicksichtigung der CO-Valenzschwingungen aus den abgestuften Dipolmomenten treffen, SO besonders bei den drei und n i e h Isomeren mit den Liganden Piperidin. Di&thylphenylphosphin und Triathylarsin (vgl. 1. c.15), S. 2184). -Durch Umsetzung mit Chlor bzw. Brom bilden sich aus den Jodokomplexen die entsprechenden Derivate mit X = C1, Br, wobei Im allgememen die vorliegende Raumstruktur erhalten blei bt. Structural Isomers of Ruthenium Dicarbonyl Halide Complexes, [Ru(CO)~L~X~], with Monoand Bidentate Ligands')Polymeric ruthenium carbonyl iodide, [ Ru(CO)2121n, reacts in benzene solution with a number of mono-and bidentate ligands (L and L", resp.), e.g. amines, organo derivatives of phosphorus, arsenic, and antimony, and also organo chalcogenides, to yield structural isomers of general formula [ R u ( C O )~L~X~] and [Ru(CO)2L'X2] (X = I). The likewise diamagnetic and non-conducting monocarbonyl derivatives, [Ru(CO)L~X~]. are formed in special cases only. The different isomeric dicarbonyls are distinguished by colour, solubilrty, and melting point. Consideration of the CO streching frequencies and total dipole moment values enables a dicision to be made between thc 5 possible structural types, particularly for the three or four isomeric compounds derived from the ligands piperidine, dicthylphenylphosphine, and triethylarsine (see following article, p. 2184). -Corresponding chloro and bromo derivatives ( X = C1, Br) are formed by treating the iodo complexes with chlorine and bromine; the structures in general remain the same.Vor einiger Zeit wurde iiber Kohlenoxidkomplexe des Rutheniums mit den heterogenen Kationen [Ru(C0)3(PR&X]-(R = C6H5, C~H S , C6Hll; X = C1, J) berichtet 2', die sich am entsprechenden nichtionogenen Komplexen Ru(CO)*(PR3)2Xz 1) 161. Mitteil. iiber Metallcarbonyle. -160.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.