BACKGROUND: The physical properties of polyamides can be enhanced through incorporation of inorganic micro-and nanofillers such as silica nanoparticles. Transparent sol-gel-derived organic-inorganic nanocomposites were successfully prepared by in situ incorporation of a silica network into poly(trimethylhexamethylene terephthalamide) using diethylamine as catalyst. Thin films containing various proportions of inorganic network obtained by evaporating the solvent were characterized using mechanical, dynamic mechanical thermal and morphological analyses.
RESULTS:Tensile measurements indicate that modulus as well as stress at yield and at break point improved while elongation at break and toughness decreased for the hybrid materials. The maximum value of stress at yield point (72 MPa) was observed with 10 wt% silica while the maximum stress at break point increased up to 66 MPa with 20 wt% silica relative to that of pure polyamide (44 MPa). Tensile modulus was found to increase up to 2.59 GPa with 10 wt% silica in the matrix. The glass transition temperature and the storage moduli increased with increasing silica content. The maximum increase in the T g value (144 • C) was observed with 20 wt% silica. Scanning electron microscopy investigation gave the distribution of silica, with an average particle size ranging from 3 to 24 nm. CONCLUSION: These results demonstrate that nanocomposites with high mechanical strength can be prepared through a sol-gel process. The increase in the T g values suggests better cohesion between the two phases, and the morphological results describe a uniform dispersion of silica particles in the polymer matrix at the nanoscale.
A series of hybrid materials incorporating imide-modified silica (IM-silica) network structures into a polyimide (PI) matrix were produced with a sol-gel technique from solution mixtures of poly(amic acid) and tetraethoxysilane (TEOS) containing alkoxysilane-terminated amic acids with various degrees of polymerization. The hybrid films, obtained by solvent evaporation, were heated successively to a maximum temperature of 3008C to carry out the imidization process and silica network formation in the PI matrix. The morphology and mechanical properties of these hybrids with IM-silica networks were studied and compared with the properties of one in which reinforcement of the matrix was achieved with a pure silica network generated from TEOS. The introduction of longer imide spacer groups into the silica network led to a drastic decrease in the silica particle size. Improved tensile modulus was observed in such compatibilized hybrid systems.Comparative thermogravimetric measurements of these hybrids showed improved thermooxidative resistance. A PI hybrid with 30% IM-silica had a thermal decomposition temperature nearly 2608C higher than that of the pure PI matrix. The high surface area of the interconnected silica domains and increased interfacial interaction were believed to restrict the segmental motion of the polymer and thus slow the diffusion of oxygen in the matrix, thereby slowing the oxidative decomposition of the polymer. The reinforcement of existing and new PIs by this method offers an opportunity for improving their thermooxidative stability without degrading their mechanical strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.