The present paper investigates the impact behaviour of both pristine carbon-fibre-reinforced-plastic (CFRP) composite laminates and repaired CFRP laminates. For the patch-repaired CFRP specimen, the pristine CFRP panel specimen has been damaged by cutting out a central disc of the CFRP material and then repaired using an adhesively bonded patch of CFRP to cover the hole. Drop-weight, impact tests are performed on these two types of specimens and a numerical elastic-plastic, three-dimensional damage model is developed and employed to simulate the impact behaviour of both types of specimen. This numerical model is meso-scale in nature and assumes that cracks initiate in the CFRP at a nano-scale, in the matrix around fibres, and trigger sub-micrometre intralaminar matrix cracks during the impact event. These localized regions of intralaminar cracking then lead to interlaminar, i.e. delamination, cracking between the neighbouring plies which possess different fibre orientations. These meso-scale, intralaminar and interlaminar, damage processes are modelled using the numerical finite-element analysis model with each individual ply treated as a continuum. Good agreement is found between the results from the experimental studies and the predictions from the numerical simulations.
This article is part of the theme issue âNanocracks in nature and industryâ.