The environmental contaminant 1,2-dibromoethane and diepoxybutane, an oxidation product of the important industrial chemical butadiene, are bis-functional electrophiles and known to be mutagenic and carcinogenic. One mechanism by which bis-electrophiles can exert their toxic effects is through the induction of genotoxic and mutagenic DNA-peptide crosslinks. This mechanism has been shown in systems overexpressing the DNA repair protein O 6 -alkylguanine DNA-alkyltransferase (AGT) or glutathione S-transferase and involves reactions with nucleophilic cysteine residues. The hypothesis that DNA-protein crosslink formation is a more general mechanism for genotoxicity by bis-electrophiles was investigated by screening nuclear proteins for reactivity with model monofunctional electrophiles. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was identified as a candidate due to the nucleophilicity of two cysteine residues (Cys 152 and Cys 246 ) in reaction screens with model electrophiles (Dennehy, M. K. et al. (2006) Chem. Res. Toxicol. 19,[20][21][22][23][24][25][26][27][28][29]. Incubation of GAPDH with bis-electrophiles resulted in inhibition of its catalytic activity, but only at high concentrations of diepoxybutane. In vitro assays indicated DNA-GAPDH crosslink formation in the presence of diepoxybutane, and biselectrophile reactivity at Cys 246 was confirmed using mass spectral analysis. In contrast to AGT, overexpression of human GAPDH in Escherichia coli did not enhance mutagenesis by diepoxybutane. We propose that the lack of mutational enhancement is in part due to the inherently lower reactivity of GAPDH toward bis-electrophiles as well as the reduced DNA binding ability relative to AGT, preventing the in vivo formation of DNA-protein crosslinks and enhanced mutagenesis.