Abstract:Recently, the measurement of indicator dilution curves using a photoacoustic (PA) technology was reported, which showed promising results on the noninvasive estimation of cardiac output (CO) that is an important hemodynamic parameter useful in various clinical situations. However, in clinical practice, measuring PA indicator dilution curves from an arterial blood vessel requires an ultrasound transducer array capable of focusing on the targeted artery. This causes several challenges on the clinical translation of the PA indicator dilution method, such as high sensor cost and complexity. In this paper, we theoretically derived that a composite PA indicator dilution curve simultaneously measured from both arterial and venous blood vessels can be used to estimate CO correctly. The ex-vivo and in-vivo experimental results with a flat ultrasound transducer verified the developed theory. We believe this new concept would overcome the main challenges on the clinical translation of the noninvasive PA indicator dilution technology.