Carotenoids are natural pigments with substantial applications in nutraceutical, pharmaceutical, and food industries. In this study, optimization of the fermentation process for enhancement of β-carotene and biomass production by
Exiguobacterium acetylicum
S01 was achieved by employing statistical designs including the Placket-Burman design (PBD) and response surface methodology (RSM). Among the seven variables investigated by two levels in PBD, glucose, peptone, pH and temperature were indicated as crucial variables (
p
< 0.0001) for β-carotene and biomass productivity. Response surface methodology was further applied to evaluate the optimal concentrations of these four variables for maximum β-carotene and biomass productivity. The optimized medium contained glucose 1.4 g/L, peptone 26.5 g/L, pH 8.5, and temperature 30 °C, respectively. A significant increase in β-carotene (40.32 ± 2.55 mg/L) and biomass (2.19 ± 0.10 g/L) productivities in
E. acetylicum
S01 were achieved by using RSM, which was 3.47-fold and 2.36-fold higher in the optimized medium compared to the un-optimized medium. Further, the optimum fermentation condition in the 5-L bioreactor was achieved a maximal β-carotene yield of 107.22 ± 5.78 mg/L within 96 h. Moreover, the expression levels of carotenoid biosynthetic genes (phytoene desaturase (CrtI) and phytoene synthase (CrtB)) were up-regulated (2.89-fold and 3.71-fold) in
E. acetylicum
under the optimized medium conditions. Overall, these results suggest that
E. acetylicum
S01 can be used as a promising microorganism for the commercial production of β-carotene.