N 2 O-reducing organisms with nitrous oxide reductases (NosZ) are known as the only biological sink of N 2 O in the environment. Among the most abundant nosZ genes found in the environment are nosZ genes affiliated with the understudied Gemmatimonadetes phylum. In this study, a unique regulatory mechanism of N 2 O reduction in Gemmatimonas aurantiaca strain T-27, an isolate affiliated with the Gemmatimonadetes phylum, was examined. Strain T-27 was incubated with N 2 O and/or O 2 as the electron acceptor. Significant N 2 O reduction was observed only when O 2 was initially present. When batch cultures of strain T-27 were amended with O 2 and N 2 O, N 2 O reduction commenced after O 2 was depleted. In a long-term incubation with the addition of N 2 O upon depletion, the N 2 O reduction rate decreased over time and came to an eventual stop. Spiking of the culture with O 2 resulted in the resuscitation of N 2 O reduction activity, supporting the hypothesis that N 2 O reduction by strain T-27 required the transient presence of O 2 . The highest level of nosZ transcription (8.97 nosZ transcripts/recA transcript) was observed immediately after O 2 depletion, and transcription decreased ϳ25-fold within 85 h, supporting the observed phenotype. The observed difference between responses of strain T-27 cultures amended with and without N 2 O to O 2 starvation suggested that N 2 O helped sustain the viability of strain T-27 during temporary anoxia, although N 2 O reduction was not coupled to growth. The findings in this study suggest that obligate aerobic microorganisms with nosZ genes may utilize N 2 O as a temporary surrogate for O 2 to survive periodic anoxia.IMPORTANCE Emission of N 2 O, a potent greenhouse gas and ozone depletion agent, from the soil environment is largely determined by microbial sources and sinks. N 2 O reduction by organisms with N 2 O reductases (NosZ) is the only known biological sink of N 2 O at environmentally relevant concentrations (up to ϳ1,000 parts per million by volume [ppmv]). Although a large fraction of nosZ genes recovered from soil is affiliated with nosZ found in the genomes of the obligate aerobic phylum Gemmatimonadetes, N 2 O reduction has not yet been confirmed in any of these organisms. This study demonstrates that N 2 O is reduced by an obligate aerobic bacterium, Gemmatimonas aurantiaca strain T-27, and suggests a novel regulation mechanism for N 2 O reduction in this organism, which may also be applicable to other obligate aerobic organisms possessing nosZ genes. We expect that these findings will significantly advance the understanding of N 2 O dynamics in environments with frequent transitions between oxic and anoxic conditions.