Vascular epiphytes are an important component of many ecosystems and constitute a substantial part of global plant diversity. In this context, accidental epiphytism, that is, the opportunistic epiphytic growth of typically terrestrial species, deserves special attention because it provides crucial insights into the global distribution of vascular epiphytes and the initial evolution of epiphytic lineages. Even though accidental epiphytes have been mentioned in the literature for more than a century, they have been neglected in most epiphyte studies. Only recently has accidental epiphytism been investigated more thoroughly. Therefore, the aim of this article is to provide a comprehensive review of the ecological basis and evolutionary relevance of this common but largely neglected phenomenon and to highlight open questions and promising research directions. Our central statement—that any species has the potential to grow epiphytically given the availability of suitable microhabitats and successful dispersal—is backed up by a compilation of observations of accidental epiphytes from numerous ecosystems with diverse climates, even including semiarid Mediterranean ones. A variety of arboreal microhabitats and environmental conditions conform to the ecological niche of typical terrestrial species, with the availability of such microhabitats depending on the interaction of local climate conditions, host tree age, and host species identity. Whenever suitable microhabitats are available in tree crowns, accidental epiphytism is limited primarily by dispersal. In an evolutionary context, the conquest of forest canopy represents an ecological opportunity where accidental epiphytes act as links between terrestrial and epiphytic life forms. We discuss two fundamental scenarios with sympatric speciation, selective pressure, autopolyploidy, and allopatric speciation as underlying mechanisms in the transition from terrestrial to epiphytic growth. In conclusion, we argue that accidental epiphytism is a substrate and dispersal‐dependent phenomenon and that, both from an individual perspective and an evolutionary perspective, epiphytism reflects the occupation of suitable but previously unexploited arboreal microhabitats. Acknowledging the fundamental principles that plant growth is opportunistic and that dispersal is a stochastic process can decisively improve our understanding of species distributions and other ecological patterns, as in the case of accidental epiphytism.