Full plastome sequences for land plants have become readily accessible thanks to the development of Next Generation Sequencing (NGS) techniques and powerful bioinformatic tools. Despite this vast amount of genomic data, some lineages remain understudied. Full plastome sequences from the highly diverse (>1,500 spp.) subfamily Tillandsioideae (Bromeliaceae, Poales) have been published for only three (i.e., Guzmania, Tillandsia, and Vriesea) out of 22 currently recognized genera. Here, we focus on core Tillandsioideae, a clade within subfamily Tillandsioideae, and explore the contribution of individual plastid markers and data categories to inform deep divergences of a plastome phylogeny. We generated 37 high quality plastome assemblies and performed a comparative analysis in terms of plastome structure, size, gene content and order, GC content, as well as number and type of repeat motifs. Using the obtained phylogenetic context, we reconstructed the evolution of these plastome attributes and assessed if significant shifts on the evolutionary traits’ rates have occurred in the evolution of the core Tillandsioideae. Our results agree with previously published phylogenetic hypotheses based on plastid data, providing stronger statistical support for some recalcitrant nodes. However, phylogenetic discordance with previously published nuclear marker-based hypotheses was found. Several plastid markers that have been consistently used to address phylogenetic relationships within Tillandsioideae were highly informative for the retrieved plastome phylogeny and further loci are here identified as promising additional markers for future studies. New lineage-specific plastome rearrangements were found to support recently adopted taxonomic groups, including large inversions, as well as expansions and contractions of the inverted repeats. Evolutionary trait rate shifts associated with changes in size and GC content of the plastome regions were found across the phylogeny of core Tillandsioideae.
Epiphytes are hyper‐diverse and one of the frequently undervalued life forms in plant surveys and biodiversity inventories. Epiphytes of the Atlantic Forest, one of the most endangered ecosystems in the world, have high endemism and radiated recently in the Pliocene. We aimed to (1) compile an extensive Atlantic Forest data set on vascular, non‐vascular plants (including hemiepiphytes), and lichen epiphyte species occurrence and abundance; (2) describe the epiphyte distribution in the Atlantic Forest, in order to indicate future sampling efforts. Our work presents the first epiphyte data set with information on abundance and occurrence of epiphyte phorophyte species. All data compiled here come from three main sources provided by the authors: published sources (comprising peer‐reviewed articles, books, and theses), unpublished data, and herbarium data. We compiled a data set composed of 2,095 species, from 89,270 holo/hemiepiphyte records, in the Atlantic Forest of Brazil, Argentina, Paraguay, and Uruguay, recorded from 1824 to early 2018. Most of the records were from qualitative data (occurrence only, 88%), well distributed throughout the Atlantic Forest. For quantitative records, the most common sampling method was individual trees (71%), followed by plot sampling (19%), and transect sampling (10%). Angiosperms (81%) were the most frequently registered group, and Bromeliaceae and Orchidaceae were the families with the greatest number of records (27,272 and 21,945, respectively). Ferns and Lycophytes presented fewer records than Angiosperms, and Polypodiaceae were the most recorded family, and more concentrated in the Southern and Southeastern regions. Data on non‐vascular plants and lichens were scarce, with a few disjunct records concentrated in the Northeastern region of the Atlantic Forest. For all non‐vascular plant records, Lejeuneaceae, a family of liverworts, was the most recorded family. We hope that our effort to organize scattered epiphyte data help advance the knowledge of epiphyte ecology, as well as our understanding of macroecological and biogeographical patterns in the Atlantic Forest. No copyright restrictions are associated with the data set. Please cite this Ecology Data Paper if the data are used in publication and teaching events.
The genus Peperomia is represented by eight species in Uruguay: P. catharinae, P. comarapana, P. hispidula, P. increscens, P. pereskiifolia, P. psilostachya, P. tetraphylla and P. trineuroides. Peperomia psilostachya is reported for the first time for the flora of Uruguay, from material collected in moist hillside and riverside forests from the northeast and east of the country. Three new synonyms are proposed: P. arechavaletae var. arechavaletae as synonym of P. trineuroides, P. arechavaletae var. minor of P. tetraphylla and P. trapezoidalis of P. psilostachya. Lectotypes for P. arechavaletae, P. arechavaletae var. minor and P. tacuariana, and a neotype for P. herteri are designated. The taxonomic treatment includes synonymies used in Uruguay, morphological descriptions, distribution and habitat data, phenology, conservation assesment, observations, and material examined for each species treated. A species identification key, plant illustrations and distribution maps in Uruguay are provided. ResumenEl género Peperomia está representado en Uruguay por ocho especies: P. catharinae, P. comarapana, P. hispidula, P. increscens, P. pereskiifolia, P. psilostachya, P. tetraphylla y P. trineuroides. Peperomia psilostachya es registrada por primera vez para la flora de Uruguay a partir de material colectado en bosques de quebrada y ribereños del noreste y este del país. Se proponen tres nuevas sinonimias: P. arechavaletae var. arechavaletae como sinónimo de P. trineuroides, P. arechavaletae var. minor de P. tetraphylla, y P. trapezoidalis de P. psilostachya. Se designan lectotipos para P. arechavaletae, P. arechavaletae var. minor y P. tacuariana, y un neotipo para P. herteri. El tratamiento taxonómico incluye para cada especie sinonimias usadas en Uruguay, descripciones morfológicas, datos de distribución y hábitat, fenología, evaluación del estatus de conservación, observaciones y material examinado. Asimismo, se presenta una clave para la identificación de las especies, ilustraciones y mapas de distribución en Uruguay.
We provide an updated list of the vascular epiphytic flora occurring in native environments of Uruguay based on literature review, herbarium specimens, and fieldwork throughout the country. The catalogue provides standardized information for each species, including accepted name, synonyms used within Uruguay, epiphytic category, distribution within the country, habitat, conservation status, observations, and a voucher citation. The effort documented 73 species for the epiphytic flora of Uruguay (3 % of the flora), distributed among 29 genera and 12 families. Bromeliaceae was the richest family (17), followed by Polypodiaceae (16) and Orchidaceae (12). Tillandsia stood out as the most speciose genus with 15 species. Characteristic holoepiphytes was the most diverse ecological category. More than half of the epiphytic species documented for Uruguay (53 %) reach their southernmost geographic distribution in the country, whereas only two mostly epipetric species of Tillandsia-T. arequitae and T. uruguayensis-are endemic to the country. Almost half of the epiphytic species found are presently under categories of threat of extinction, with 60 % of them occurring in national protected areas. Both the richest epiphytic families and the predominance of characteristic holoepiphytes coincide with findings from floristic and ecological studies previously carried out in humid subtropical regions.
Se reporta por primera vez para la flora de Uruguay la orquídea epífita Acianthera hygrophila (Barb. Rodr.) Pridgeon & M.W. Chase. La misma fue hallada en el bosque ribereño del Río Yaguarón en el este del departamento de Cerro Largo próximo al límite con Brasil. Este registro representa el límite sur de distribución de la especie. Se presenta una descripción ampliada, ilustración y mapa de distribución de A. hygrophila, así como una clave para la identificación de las especies de Acianthera presentes en Uruguay
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.