The study of interfacial phenomena is central to a range of chemical, physical, optical, and electromagnetic systems such as surface imaging, polymer interactions, friction/wear, and ion-transport in batteries. Studying intermolecular forces and processes of interfaces at the sub-nano scale has proven difficult due to limitations in surface preparation methods. Here, we describe a method for fabricating reflective, deformable composite layers that expose an ultrasmooth silica (SiO 2 ) surface (RMS roughness < 0.4 nm) with interferometric applications. The robust design allows for cleaning and reusing the same surfaces for over a week of continuous experimentation without degradation. The electric double-layer forces measured using the composite surfaces are within 10% of the theoretically predicted values. We also demonstrate that standard chemisorption and physisorption procedures on silica can be applied to chemically modify the surfaces; as a demonstration of this, the composite surfaces are successfully modified with octadecyltrichlorosilane (OTS) to study their hydrophobic interactions in water using a surface force apparatus (SFA). These composite surfaces provide a basis for the preparation of a variety of new surfaces, and should be particularly beneficial for the SFA and colloidal probe methods that employ optical/interferometric and electrochemical techniques, enabling characterization of previously unattainable surface and interfacial phenomena.