SRM 2905 Trace Particulate Explosives was developed to simulate the residues produced by handling plastic and military explosives. A series of nine candidate materials were prepared by coating chromatographic supports with either Composition C-4 (containing RDX (hexahydro-1,3,5-trinitro-1,3,5-Triazine) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-Tetrazocine)) or TNT (2,4,6-trinitrotoluene). Criteria for selection of the best material for the SRM included: coating efficiency, extractability with organic solvents, thermal storage stability, consistency of the particle size with fingerprint residues, and suitability for calibration of trace explosives detectors. The final base material selected for the SRM was octadecylsilane-modified silica (C(18)) with a nominal 20-30 microm particle size. Four materials comprise the SRM, with two nominal concentrations of explosive, 0.01% and 0.1% (mass fraction) for both C-4 and TNT, respectively. The final certified concentrations were determined by liquid chromatography (LC) with ultraviolet absorbance detection (LC/UV) and a liquid chromatography with mass spectrometric (LC/MS) method using negative ion atmospheric pressure ionization (APCI(-)) with an acetate ionization additive that improves quantitation. The SRM was tested on a table-top field explosives detector based ion mobility spectrometry (IMS).