Catecholamine-derived alkaloids of the simple tetrahydroisoquinoline, 1-benzyl-tetrahydroisoquinoline and tetrahydroprotoberberine classes have been tested for their ability to inhibit the binding of seven different radioligands to neurotransmitter receptors of brain synaptic membranes. Alkaloids of all three classes were active in inhibiting 3H-clonidine binding to alpha 2-adrenergic receptors. Stereoselectivity of tetrahydropapaveroline in binding to alpha 2-adrenergic receptors was evidenced by the marked activity of the S-(--) isomer (IC50 = 0.65 microM) in comparison to the R-(+) enantiomer (IC50 = 50 microM). The simple tetrahydroisoquinolines (3,4-dihydroxytetrahydroisoquinoline and salsolinol), the four isomeric mono-O-methyl derivatives of 2,3,10,11-tetrahydroxyberbine and tetrahydropapaveroline were the most potent inhibitors of 3H-apomorphine binding to dopaminergic receptor agonist sites. The tetrahydroprotoberberines, as a class, were the most potent inhibitors of 3H-spiroperidol binding to dopaminergic receptor antagonist sites and of 3H-WB-4101 binding to alpha 1-adrenergic receptors. The 1-benzyl-tetrahydroisoquinolines exhibited varying degrees of interaction with beta 1-adrenergic receptors. Tetrahydropapaveroline (IC50 = 0.3 microM) was the most active of the 24 alkaloids tested in inhibiting binding of 3H-dihydroalprenolol to beta 1-adrenergic receptors. None of the alkaloids significantly affected 3H-QNB binding to muscarinic-cholinergic receptors, and selected alkaloids from each class interacted only moderately with serotonergic receptors.