Compact quantum groups can be studied by investigating their representation categories in analogy to the Schur–Weyl/Tannaka–Krein approach. For the special class of (unitary) “easy” quantum groups, these categories arise from a combinatorial structure: rows of two-colored points form the objects, partitions of two such rows the morphisms. Vertical/horizontal concatenation and reflection give composition, monoidal product and involution. Of the four possible classes $${\mathcal {O}}$$
O
, $${\mathcal {B}}$$
B
, $${\mathcal {S}}$$
S
and $${\mathcal {H}}$$
H
of such categories (inspired, respectively, by the classical orthogonal, bistochastic, symmetric and hyperoctahedral groups), we treat the first three—the non-hyperoctahedral ones. We introduce many new examples of such categories. They are defined in terms of subtle combinations of block size, coloring and non-crossing conditions. This article is part of an effort to classify all non-hyperoctahedral categories of two-colored partitions. It is purely combinatorial in nature. The quantum group aspects are left out.