Within the framework of unitary easy quantum groups, we study an analogue of Brauer's Schur-Weyl approach to the representation theory of the orthogonal group. We consider concrete combinatorial categories whose morphisms are formed by partitions of finite sets into disjoint subsets of cardinality two; the points of these sets are colored black or white. These categories correspond to "half-liberated easy" interpolations between the unitary group and Wang's quantum counterpart. We complete the classification of all such categories demonstrating that the subcategories of a certain natural halfway point are equivalent to additive subsemigroups of the natural numbers; the categories above this halfway point have been classified in a preceding article. We achieve this using combinatorial means exclusively. Our work reveals that the half-liberation procedure is quite different from what was previously known from the orthogonal case.
Compact quantum groups can be studied by investigating their representation categories in analogy to the Schur–Weyl/Tannaka–Krein approach. For the special class of (unitary) “easy” quantum groups, these categories arise from a combinatorial structure: rows of two-colored points form the objects, partitions of two such rows the morphisms. Vertical/horizontal concatenation and reflection give composition, monoidal product and involution. Of the four possible classes $${\mathcal {O}}$$
O
, $${\mathcal {B}}$$
B
, $${\mathcal {S}}$$
S
and $${\mathcal {H}}$$
H
of such categories (inspired, respectively, by the classical orthogonal, bistochastic, symmetric and hyperoctahedral groups), we treat the first three—the non-hyperoctahedral ones. We introduce many new examples of such categories. They are defined in terms of subtle combinations of block size, coloring and non-crossing conditions. This article is part of an effort to classify all non-hyperoctahedral categories of two-colored partitions. It is purely combinatorial in nature. The quantum group aspects are left out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.