This paper summarizes the nodal level results from the VVER MSLB core simulation in the NURESAFE EU project. The main objective is to implement and verify new developments in the models and couplings of 3D core simulators for cores with hexagonal fuel assemblies. Recent versions of the COBAYA and DYN3D core physics codes, and the FLICA4 and CTF thermal-hydraulic codes were tested standalone and coupled through standardized coupling functions in the Salome platform. The MSLB core transient was analyzed in coupled code simulation of a core boundary condition problem derived from the OECD VVER MSLB benchmark. The impact of node subdivision and different core mixing models, as well as the effects of CFD computed core inlet thermal-hydraulic boundary conditions on the core dynamics were explored.