Nanostructured anodic films on transition metals prepared using the electrochemical anodization method have recently attracted particular attention owing to their extraordinary properties and potential use in a variety of applications. Herein, we provide a thorough review of the anodization fabrication of anodic films with different nanostructures, including nanopores, nanotubes, nanoflowers, nanoneedles and nanowires on transition metals, focusing on the growth processes of nanostructured anodic films on three representative transition metals, namely, iron, copper and zinc. Specific consideration is given to the anodization behavior and formed film nanostructures of these transition metals. We conclude that electrolyte composition plays a key role in influencing the final morphologies of anodic films. Fluoride-containing solutions represent universal electrolytes for forming nanostructured anodic films on transition metals. The main applications of the resulting nanostructured anodic films, especially in energy-related fields, such as photoelectrochemical water splitting and supercapacitors, are also presented and discussed. Finally, we indicate the main challenges associated with the fabrication of anodic films with highly ordered nanostructures and the potential future directions of this field are indicated.