Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Many questions have been raised about the thermal-mechanical development of plate tectonics boundary interactions, lithospheric processes, mantle activity, movement of faults, continental thinning, and generally the heat beneath our feet. The earthquake waves are originating in the Earth’s crust or upper mantle, which ricochet around the earth's interior and traveling most rapidly through cold, dense regions, and more slowly through hotter rocks. In this paper, in order to identify and describe the Caucasus territory Hot-Cold spots and better understand the regional tectonic activities based on the fast and slow wave velocity anomalies, the 2D tomographic maps of Rayleigh wave dispersion curves were imaged. To obtain these maps in the ever-evolving collision zone of the Eurasian-Arabic plates, we performed a 2D-linear inversion procedure on the Rayleigh wave in a period ranging from 5 to 70 s (depth ~200 km). To conduct this, ~1500 local-regional earthquakes (M≥3.7) recorded by the 48 broadband-short period stations from 1999 to 2018 were used. In this study, we assumed that the low-velocity tomography images or dark red-orange shades indicate hot spots (slow-regions) and high-velocity or dark blue-green-yellow shades imply cold spots (fast-regions). Therefore, by using the technique of increasing-decreasing the velocity anomaly in a wide area with complicated tectonic units the hot-zones and extensive cold-aseismic areas were described and investigated. Hence, for short-periods (5≤T≤25 s; 6.6≤depth≤30.8 km) 15 hot spots were determined. The result for medium-periods (30≤T≤45 s) show two hot spots with a depth of ~108 km. In long-periods (depth ~200 km), most part of the study area has covered by ultra-low-velocity anomaly as a permanent hot spots.
Many questions have been raised about the thermal-mechanical development of plate tectonics boundary interactions, lithospheric processes, mantle activity, movement of faults, continental thinning, and generally the heat beneath our feet. The earthquake waves are originating in the Earth’s crust or upper mantle, which ricochet around the earth's interior and traveling most rapidly through cold, dense regions, and more slowly through hotter rocks. In this paper, in order to identify and describe the Caucasus territory Hot-Cold spots and better understand the regional tectonic activities based on the fast and slow wave velocity anomalies, the 2D tomographic maps of Rayleigh wave dispersion curves were imaged. To obtain these maps in the ever-evolving collision zone of the Eurasian-Arabic plates, we performed a 2D-linear inversion procedure on the Rayleigh wave in a period ranging from 5 to 70 s (depth ~200 km). To conduct this, ~1500 local-regional earthquakes (M≥3.7) recorded by the 48 broadband-short period stations from 1999 to 2018 were used. In this study, we assumed that the low-velocity tomography images or dark red-orange shades indicate hot spots (slow-regions) and high-velocity or dark blue-green-yellow shades imply cold spots (fast-regions). Therefore, by using the technique of increasing-decreasing the velocity anomaly in a wide area with complicated tectonic units the hot-zones and extensive cold-aseismic areas were described and investigated. Hence, for short-periods (5≤T≤25 s; 6.6≤depth≤30.8 km) 15 hot spots were determined. The result for medium-periods (30≤T≤45 s) show two hot spots with a depth of ~108 km. In long-periods (depth ~200 km), most part of the study area has covered by ultra-low-velocity anomaly as a permanent hot spots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.