Context
Clinical supervisors make judgements about how much to trust learners with critical activities in patient care. Such decisions mediate trainees' opportunities for learning and competency development and thus are a critical component of education. As educators apply entrustment frameworks to assessment, it is important to determine how narrative feedback reflecting entrustment may also address learners' educational needs.
Methods
In this study, we used artificial intelligence (AI) and natural language processing (NLP) to identify characteristics of feedback tied to supervisors' entrustment decisions during direct observation encounters of clerkship medical students (3328 unique observations). Supervisors conducted observations of students and collaborated with them to complete an entrustment‐based assessment in which they documented narrative feedback and assigned an entrustment rating. We trained a deep neural network (DNN) to predict entrustment levels from the narrative data and developed an explainable AI protocol to uncover the latent thematic features the DNN used to make its prediction.
Results
We found that entrustment levels were associated with level of detail (specific steps for performing clinical tasks), feedback type (constructive versus reinforcing) and task type (procedural versus cognitive). In justifying both high and low levels of entrustment, supervisors detailed concrete steps that trainees performed (or did not yet perform) competently.
Conclusions
Framing our results in the factors previously identified as influencing entrustment, we find a focus on performance details related to trainees' clinical competency as opposed to nonspecific feedback on trainee qualities. The entrustment framework reflected in feedback appeared to guide specific goal‐setting, combined with details necessary to reach those goals. Our NLP methodology can also serve as a starting point for future work on entrustment and feedback as similar assessment datasets accumulate.