Background
Previous attempts to support the single ventricle circulation mechanically have suggested that a custom-built assist device is needed to push rather than pull through the pulmonary circulation. We hypothesized that using a conventional ventricular assist device, with or without conversion of a total cavopulmonary connection to a bidirectional Glenn cavopulmonary connection would allow assistance by pulling blood through the circuit and improve cardiac index (CI).
Methods
Cavopulmonary connections were established in each of five Yorkshire pigs (25kg) using ePTFE conduits in a “Y” configuration with appropriate clamping of limbs of the Y to achieve: total cavopulmonary Fontan connection (TCPC), SVC cavopulmonary connection (SVC Glenn) and IVC cavopulmonary connection (IVC Glenn). A common atrium had been established previously by balloon septostomy. Mechanical circulatory assistance of the single systemic ventricle was achieved using a centrifugal pump with common atrial inflow and proximal ascending aortic outflow. CI was calculated using an ultrasonic flow meter placed on the distal ascending aorta and compared between assisted and non-assisted circulation for 3 conditions: TCPC, SVC Glenn and IVC Glenn. Mean pulmonary artery pressure (PAP), common atrial pressure (LAP), arterial oxygen saturation (SAT), partial pressure of arterial oxygen (PO2) and oxygen delivery (DO2) were calculated.
Results
Unassisted SVC Glenn CI tended to be higher than TCPC or IVC Glenn (Figure 1). Significant augmentation of total CI was achieved with mechanical assistance for SVC Glenn (109% ± 24%, P =.04) and also with TCPC (130% ± 109%, P = .01). Assisted CI achieved at least mean baseline biventricular CI for all 3-support modes. Oxygen delivery was highest for assisted SVC Glenn 1786 ± 1307 ml/l/min and lowest with TCPC 1146 ± 386 ml/l/min, with a trend toward lower common atrial pressure and lower pulmonary artery pressure for SVC Glenn.
Conclusions
SVC bidirectional Glenn circulation may allow optimal augmentation of cardiac index and oxygen delivery in a failing single ventricle using a conventional pediatric ventricular assist device. Our model also suggests that the Fontan circulation itself can be supported with systemic ventricular assistance of the single ventricle.