A linear algebraic group G over a field k is called a Cayley group if it admits a Cayley map, i.e., a G-equivariant birational isomorphism over k between the group variety G and its Lie algebra. A Cayley map can be thought of as a partial algebraic analogue of the exponential map. A prototypical example is the classical "Cayley transform" for the special orthogonal group SOn defined by Arthur Cayley in 1846. A linear algebraic group G is called stably Cayley if G × G r m is Cayley for some r ≥ 0. Here G r m denotes the split r-dimensional k-torus. These notions were introduced in 2006 by Lemire, Popov and Reichstein, who classified Cayley and stably Cayley simple groups over an algebraically closed field of characteristic zero.In this paper we study reductive Cayley groups over an arbitrary field k of characteristic zero. Our main results are a criterion for a reductive group G to be stably Cayley, formulated in terms of its character lattice, and a classification of stably Cayley simple groups.2010 Mathematics Subject Classification. Primary 20G15, 20C10.