Artificial Intelligence and Machine Learning in Defense Applications IV 2022
DOI: 10.1117/12.2640690
|View full text |Cite
|
Sign up to set email alerts
|

CBAM-YOLOv5 for infrared image object detection

Abstract: Identifying an object of interest in thermal images plays a vital role in several military and civilian applications. The deep learning approach has shown its superiority in object detection in various RGB datasets. However, regarding to thermal images, their low resolution and shortage of detail properties impose a huge challenge that hinders the accuracy. In this paper, we propose an improved version of YOLOv5 model to tackle this problem. Convolution Block Attention Module (CBAM) is integrated into traditio… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 30 publications
0
0
0
Order By: Relevance