The purpose of present study was to experimentally evaluate the dosimetric uncertainties in 3-dimensional conformal radiotherapy (3DCRT), dynamic intensity modulated radiotherapy (D-IMRT), step-shoot (SS-IMRT), and volumetric modulated arc therapy (VMAT) treatment delivery techniques due to intra-and inter-fractional target motion. Methods: A previously treated lung patient was selected for this study and was replanned for 60 Gy in 30 fractions using four techniques (3DCRT, D-IMRT, SS-IMRT, and VMAT). These plans were delivered in a clinical linear accelerator equipped with HexaPOD™ evo RT System. The target dose of static QUASAR phantom was calculated that served as reference dose to the target. The QUASAR respiratory body phantom along with patients breathing wave form and HexaPOD™ evo RT System was used to simulate the intra-fraction and inter-fraction motions. Dose measurements were done by applying the intra-fractional and inter-fractional motions in all the four treatment delivery techniques. Results: The maximum percentage deviation in a single field was-4.3%, 10.4%, and-12.2% for 3DCRT, D-IMRT and SS-IMRT deliveries, respectively. Similarly, the deviation for a single fraction was-1.51%,-1.88%,-2.22%, and-3.03% for 3DCRT, D-IMRT, SS-IMRT and VMAT deliveries, respectively. Conclusion: The impact of inter-fractional and intra-fractional uncertainties calculated as deviation between dynamic and static condition dose was large in some fractions, however average deviation calculated for thirty fractions was well within 0.5% in all the four techniques. Therefore, inter-and intra-fractional uncertainties could be concern in fewer fraction treatments such as stereotactic body radiation therapy, and should be used in conjunction with intra-and inter-fractional motion management techniques.