Obese adipose tissue (AT) is associated with chronic inflammation, and we hypothesized that the keratinocyte-derived chemokine (KC), the mouse ortholog of human interleukin-8, plays a role in obesity-mediated AT inflammation and the subsequent manifestation of insulin resistance. KC expression is increased in the AT and plasma of genetically (ob/ob) and high fat dietinduced obese mouse models, and this increase may be mediated by the elevated leptin and tumor necrosis factor-␣ levels associated with obesity. Obesity-induced KC expression occurs primarily in stromal vascular cells and not in adipocytes, and it is high in preadipocytes and decreases during adipogenesis. Although KC has no effect on adipogenesis, it induces adipocyte expression of inflammatory factors and the insulin resistance mediator, suppressor of cytokine signaling 3. Using chimeric mice deficient in the KC receptor CXCR2 in their bone marrow, we show that the lack of CXCR2 in hematopoietic cells is sufficient to protect from adipose and skeletal muscle macrophage recruitment and development of insulin resistance in diet-induced obese mice. These studies suggest that KC and its receptor CXCR2 are potential targets for the development of new therapeutic approaches for treatment of obesity-related insulin resistance, type II diabetes, and related cardiovascular diseases.Obesity is characterized by systemic low grade inflammation that appears to contribute to the genesis of insulin resistance (IR), 3 type 2 diabetes, and increased risk for cardiovascular diseases (reviewed in Ref. 1). Furthermore, adipose tissue (AT) produces a variety of inflammatory factors, and its excessive development in obesity is associated with accumulation of AT macrophages (ATMs) (1), whose recruitment and proinflammatory activation are required for the development of IR in obese mice (reviewed in Ref. 2). An important question concerning ATMs is/are the trigger(s) driving the recruitment of these cells in obesity.Efforts at identifying factors that attract and recruit ATMs have mostly focused on the CC chemokine MCP-1 (monocyte chemoattractant protein-1) and its receptor CCR2. These studies have led to contradicting results with several publications showing that MCP-1 and CCR2 are important for ATM recruitment and the subsequent development of IR (3-5), whereas others show no involvement of this chemokine and its receptor in these processes (6 -8). Furthermore, the studies that claim a role for MCP-1 and CCR2 in ATM recruitment and IR show that deficiency of the ligand or the receptor did not result in normalization of ATM content, indicating that other factors also participate in ATM recruitment. These findings suggest that the precise role of the MCP-1/CCR2 axis in ATM recruitment and IR is unclear, and that other chemokines and their receptors could also play a role in these processes. One such chemokine is interleukin 8 (IL-8), the prototypical CXC chemokine known to recruit and activate monocytes and to attract polymorphonuclear leukocytes to sites of inflammation...