Chemokines and their receptors have been implicated in the development of diabetic nephropathy. To determine whether the risk of diabetic nephropathy is influenced by two functional polymorphisms in the regulated upon activation normal T-cell expressed and secreted (RANTES) receptor gene (CCR5), we recruited patients with type 1 diabetes, including 496 case subjects with overt proteinuria or end-stage renal disease and 298 control subjects with normoalbuminuria. Male carriers of the 59029G allele, which is associated with diminished expression of CCR5 on the surface of immunocompetent cells, had significantly higher risk of developing diabetic nephropathy than noncarriers (OR [95% CI] 1.9 [1.2-3.0]). Similarly, male carriers of the 32-bp deletion, which causes truncation of the protein, had significantly higher risk of diabetic nephropathy than noncarriers (2.3 [1.3-4.2]). Combining both polymorphisms, three haplotypes were distinguished: one nonrisk haplotype carrying the 59029A allele and the 32-bp insertion and two risk haplotypes carrying the 59029A allele with the 32-bp deletion and carrying the 59029G allele with the 32-bp insertion. The distribution of these haplotypes differed significantly (P < 0.00001) in men with and without diabetic nephropathy but was not associated with diabetic nephropathy in women. In conclusion, two functional polymorphisms in CCR5 that decrease expression of the RANTES receptor on immunocompetent cells are associated with increased risk of diabetic nephropathy in type 1 diabetes, but only in men. Diabetes 54:3331-3335, 2005 I n diabetic nephropathy, the infiltration of the glomeruli and interstitium by immunocompetent cells is a common finding both in rodent models of diabetes and in biopsy specimens collected from diabetic patients (1,2). Moreover, the increased synthesis of chemokines and other inflammatory mediators by glomerular and tubular cells has been reported in hyperglycemic conditions (2,3). This includes such chemokines as regulated upon activation normal T-cell expressed and secreted (RANTES) and macrophage inflammatory protein-1␣ and macrophage inflammatory protein-1 (4 -5). These molecules are able to recruit to kidney monocytes by binding to chemokine receptors such as CCR1, CCR3, and CCR5 (6).Recent studies have reported that polymorphisms in the RANTES receptor gene (CCR5) were associated with the increased risk of nephropathy in type 2 diabetes in a Japanese population (7) and with a higher risk of kidney rejection among nondiabetic individuals with kidney transplants (8). The present study aims to examine the association of two functional polymorphisms in CCR5 with the risk of diabetic nephropathy in Caucasians with type 1 diabetes.CCR5 has been mapped to the short arm of chromosome 3 within the chemokine receptor gene cluster (9). Recent studies established that this gene comprises three exons spanning a region of about 6 kb. The clinical and functional relevance of many polymorphisms and haplotypes in CCR5 has been reported (10 -13). The most consistent d...