The failure of Thy-1 and Ly-6 to trigger interleukin-2 production in the absence of surface T-cell antigen receptor complex (TCR) expression has been interpreted to suggest that functional signalling via these phosphatidylinositol-linked alternative activation molecules is dependent on the TCR. We find, in contrast, that stimulation of T cells via Thy-1 or Ly-6 in the absence of TCR expression does trigger a biological response, the cell suicide process of activation-driven cell death. Activation-driven cell death is a process of physiological cell death that likely represents the mechanism of negative selection of T cells. The absence of the TCR further reveals that signalling leading to activation-driven cell death and to lymphokine production are distinct and dissociable. In turn, the ability of alternative activation molecules to function in the absence of the TCR raises another issue: why immature T cells, thymomas, and hybrids fail to undergo activation-driven cell death in response to stimulation via Thy-1 and Ly-6. One possibility is that these activation molecules on immature T cells are defective. Alternatively, susceptibility to activation-driven cell death may be developmentally regulated by TCR-independent factors. We have explored these possibilities with somatic cell hybrids between mature and immature T cells, in which Thy-1 and Ly-6 are contributed exclusively by the immature partner. The hybrid cells exhibit sensitivity to activation-driven cell death triggered via Thy-1 and Ly-6. Thus, the Thy-1 and Ly-6 molecules of the immature T cells can function in a permissive environment. Moreover, with regard to susceptibility to Thy-1 and Ly-6 molecules of the immature T cells can function in a permissive environment. Moreover, with regard to susceptibility to Thy-1 and Ly-6 triggering, the mature phenotype of sensitivity to cell death is genetically dominant.