The adenosine diphosphate (ADP) receptor P2RY12 (purinergic receptor P2Y, G protein coupled, 12) plays a critical role in platelet aggregation, and P2RY12 inhibitors are used clinically to prevent cardiac and cerebral thrombotic events. Extracellular ADP has also been shown to increase osteoclast (OC) activity, but the role of P2RY12 in OC biology is unknown. Here, we examined the role of mouse P2RY12 in OC function. Mice lacking P2ry12 had decreased OC activity and were partially protected from age-associated bone loss. P2ry12 -/-OCs exhibited intact differentiation markers, but diminished resorptive function. Extracellular ADP enhanced OC adhesion and resorptive activity of WT, but not P2ry12 -/-, OCs. In platelets, ADP stimulation of P2RY12 resulted in GTPase Ras-related protein (RAP1) activation and subsequent α IIb β 3 integrin activation. Likewise, we found that ADP stimulation induced RAP1 activation in WT and integrin β 3 gene knockout (Itgb3 -/-) OCs, but its effects were substantially blunted in P2ry12 -/-OCs. In vivo, P2ry12 -/-mice were partially protected from pathologic bone loss associated with serum transfer arthritis, tumor growth in bone, and ovariectomy-induced osteoporosis: all conditions associated with increased extracellular ADP. Finally, mice treated with the clinical inhibitor of P2RY12, clopidogrel, were protected from pathologic osteolysis. These results demonstrate that P2RY12 is the primary ADP receptor in OCs and suggest that P2RY12 inhibition is a potential therapeutic target for pathologic bone loss.
IntroductionOsteoclasts (OCs) are multinucleated myeloid lineage cells that are the principal source of bone resorptive activity (1). Enhanced OC activity, bone loss, and fractures are associated with rheumatoid arthritis, postmenopausal osteoporosis, and bone metastases (2). Modulation of osteoclastic bone resorption represents an attractive point of therapeutic intervention for the treatment of such conditions.Numerous purinergic G-protein-coupled nucleotide receptors are expressed in the bone microenvironment (3, 4). For example, uridine diphosphate-activated (UDP-activated) P2Y6 has been reported to increase NF-κB activation and OC survival (5), while P2Y2 (an ATP receptor) expression on osteoblasts (OBs) blocks bone mineralization (6, 7). Hoebertz et al. demonstrated that extracellular adenosine diphosphate (ADP) stimulates OC bone resorption in vitro, in part through the ADP receptor P2Y1 on OC (8); however, other ADP receptors, including purinergic receptor P2Y, G protein coupled, 12 (P2RY12), which is the target of the widely prescribed antiplatelet drug clopidogrel (Plavix), have not been evaluated for their roles in osteoclastic bone resorption.