osteoclasts, also rescued the osteoclast defect in CD47 À/À cells.We then examined the consequences of this osteoclast defect in bone metastasis. In a model of tumor metastasis to bone, bone tumor burden was decreased in the CD47 À/À mice compared with wild-type (WT) controls, with no decrease in s.c. tumor growth in CD47 À/À mice. There was decreased tumor-associated bone destruction in the CD47 À/À mice compared with WT controls, consistent with a defect in osteoclast function that was not rescued by the presence of tumor. Our data show that CD47 regulates osteoclastogenesis, in part, via regulation of NO production, and its disruption leads to a decrease in tumor bone metastasis. CD47 is a novel therapeutic target to strengthen bone mass and diminish metastatic tumor growth in bone.
Bisphosphonates (BPs), bone targeted drugs that disrupt osteoclast function, are routinely used to treat complications of bone metastasis. Studies in preclinical models of cancer have shown that BPs reduce skeletal tumor burden and increase survival. Similarly, we observed in the present study that administration of the Nitrogen-containing BP (N-BP), zoledronic acid (ZA) to osteolytic tumorbearing Tax + mice beginning at 6 months of age led to resolution of radiographic skeletal lesions. N-BPs inhibit farnesyl diphosphate (FPP) synthase, thereby inhibiting protein prenylation and causing cellular toxicity. We found that ZA decreased Tax+ tumor and B16 melanoma viability and caused the accumulation of unprenylated Rap1a proteins in vitro. However, it is presently unclear whether N-BPs exert anti-tumor effects in bone independent of inhibition of osteoclast (OC) function in vivo. Therefore, we evaluated the impact of treatment with ZA on B16 melanoma bone tumor burden in irradiated mice transplanted with splenic cells from src -/-mice, which have non-functioning OCs. OC-defective mice treated with ZA demonstrated a significant 88% decrease in tumor growth in bone compared to vehicle-treated OC-defective mice. These data support an osteoclastindependent role for N-BP therapy in bone metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.