Sodium titanate nanotubes have been prepared and modified chemically with CdSe quantum dots (QDs) using bifunctional modifiers (HS-COOH). Their photovoltaic characteristics have also been studied. The results indicate that the surface photovoltage response of nanotubes extends to the visible light region, and the intensity of surface photovoltage is enhanced after modification with CdSe QDs. The field-induced surface photovoltage spectroscopy (FISPS) shows that sodium titanate nanotubes have different photovoltaic response before and after modification. That is, the surface photovoltaic response of pure sodium titanate nanotubes increases with the enhancement of positive applied bias and decreases with the enhancement of negative applied bias. Meanwhile, the surface photovoltaic response of CdSe modified sodium titanate nanotubes is different from that of the pure sodium titanate nanotubes. The whole spectrum increases with the enhancement of applied bias at the first stage. However, when the applied bias reaches a certain value, the surface photovoltage response keeps increasing in some spectrum regions, while decreasing in other spectrum regions. This novel phenomenon is explained by using an electric field induced dipole model. sodium titanate nanotube, CdSe, surface photovoltage spectroscopy, diffusion mechanism, drift mechanism