Improvement of glycosylation is one of the most important topics in the industrial production of therapeutic antibodies. We have focused on terminal sialylation with alpha-2,6 linkage, which is crucial for anti-inflammatory activity. In the present study, we have successfully cloned cDNA of beta-galactosyl alpha-2,6 sialyltransferase (ST6Gal I) derived from Chinese hamster ovary (CHO) cells regardless of reports that stated this was not endogenously expressed in CHO cells. After expressing cloned ST6Gal I in Escherichia coli, the transferase activity was confirmed by HPLC and lectin binding assay. Then, we applied ST6Gal I to alpha-2,6 sialylation of the recombinant antibody; the ST6Gal I expression vector was transfected into the CHO cell line producing a bispecific antibody. The N-glycosylation pattern of the antibody was estimated by HPLC and sialidase digestion. About 70% of the total N-linked oligosaccharide was alpha-2,6 sialylated in the transfected cell line whereas no sialylation was observed in the non-transfected cell line. The improvement of sialylation would be of practical importance for the industrial production of therapeutic antibodies.