Mammalian cell lines are important host cells for the industrial production of pharmaceutical proteins owing to their capacity for correct folding, assembly and post-translational modification. In particular, Chinese hamster ovary (CHO) cells are the most dependable host cells for the industrial production of therapeutic proteins. Growing demand for therapeutic proteins promotes the development of technologies for high quality and productivity in CHO expression systems. The following are fundamentally important for effective production. 1) Construction of cultivation process. The CHO-based cultivation process is well established and is a general platform of therapeutic antibody production. The cost of therapeutic protein production using CHO cells is equivalent to that using microbial culture. 2) Cell line development. Recent developments in omics technologies have been essential for the development of rational methods of constructing a cell line. 3) Cell engineering for post-translational steps. Improvement of secretion, folding and glycosylaiton is an important key issue for mammalian cell production systems. This review provides an overview of the industrial production of therapeutic proteins using a CHO cell expression system.
BackgroundThe integration of biotechnology into chemical manufacturing has been recognized as a key technology to build a sustainable society. However, the practical applications of biocatalytic chemical conversions are often restricted due to their complexities involving the unpredictability of product yield and the troublesome controls in fermentation processes. One of the possible strategies to overcome these limitations is to eliminate the use of living microorganisms and to use only enzymes involved in the metabolic pathway. Use of recombinant mesophiles producing thermophilic enzymes at high temperature results in denaturation of indigenous proteins and elimination of undesired side reactions; consequently, highly selective and stable biocatalytic modules can be readily prepared. By rationally combining those modules together, artificial synthetic pathways specialized for chemical manufacturing could be designed and constructed.ResultsA chimeric Embden-Meyerhof (EM) pathway with balanced consumption and regeneration of ATP and ADP was constructed by using nine recombinant E. coli strains overproducing either one of the seven glycolytic enzymes of Thermus thermophilus, the cofactor-independent phosphoglycerate mutase of Pyrococcus horikoshii, or the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase of Thermococcus kodakarensis. By coupling this pathway with the Thermus malate/lactate dehydrogenase, a stoichiometric amount of lactate was produced from glucose with an overall ATP turnover number of 31.ConclusionsIn this study, a novel and simple technology for flexible design of a bespoke metabolic pathway was developed. The concept has been testified via a non-ATP-forming chimeric EM pathway. We designated this technology as “synthetic metabolic engineering”. Our technology is, in principle, applicable to all thermophilic enzymes as long as they can be functionally expressed in the host, and thus would be potentially applicable to the biocatalytic manufacture of any chemicals or materials on demand.
To investigate the effects of lactate on cell growth and antibody production, a new method of maintaining the lactate concentration constant in a fed-batch culture is described. When the pH was initially adjusted by sodium hydroxide, the specific growth rate decreased and specific death rate increased with an increase of lactate concentration. To investigate whether the inhibition was due to the lactate concentration itself or to the osmotic pressure, the effect of the osmotic pressure adjusted by sodium chloride was compared with that of sodium lactate. When the osmotic pressure was adjusted to same condition as that of sodium lactate using sodium chloride, the specific growth data showed the same degree of growth inhibition. It was thus evident that the inhibition to cell growth was mainly due to osmotic pressure while lactate production from glucose was found to be inhibited by the lactate itself compared with sodium chloride. The specific antibody production rate had a maximum value within a certain range of lactate concentration. Moreover, specific antibody production rate had a unified relationship with the kinetic parameter mu, in spite of the different causes of inhibition by lithium lactate and sodium lactate. A certain "trade-off" relationship between growth and antibody production existed at higher growth rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.