Microbial production of steroid drugs exhibits great potentials in much greener and more sustainable manners, in which engineering multiple cytochrome P450s is the prerequisite requirement. The pairing of multicomponents of P450 systems is a tremendous challenge. Herein, biosynthesis of pregnenolone (a common precursor of steroid drugs) in Yarrowia lipolytica was taken as a typical instance to explore the engineering strategy of the cytochrome P450 side-chain cleavage enzyme (P450scc) system. The mature forms of the components belonging to P450scc system, CYP11A1, adrenodoxin (Adx), and adrenodoxin reductase (AdR), were coexpressed in a former constructed campesterol producing strain. To maximize pregnenolone production, an integrative components pairing strategy was proposed for pairing the component sources and balancing the expression levels of CYP11A1, Adx, and AdR. Led by the above approaches, a 2344-fold improvement of pregnenolone titer was achieved at the shake flask level. Consequently, a highest reported pregnenolone titer of 78.0 mg/L in microbes was obtained in a 5 L bioreactor. Our study not only highlights the integrative components pairing of cytochrome P450scc as a general strategy for engineering other cytochrome P450s, but also provides a feasible and efficient platform of Y. lipolytica for other steroids production.