Cancer is one of the most serious leading causes of death in the world. Many eclectic factors are involved in cancer progression including genetic and epigenetic alongside environmental ones. In this account, the performance and fluctuations of microRNAs are significant in cancer diagnosis and treatment, particularly as diagnostic biomarkers in oncology. So, microRNAs manage and control the gene expression after transcription by mRNA degradation, or also they can inhibit their translation. Conspicuously, these molecular structures take part in controlling the cellular, physiological and pathological functions, which many of them can accomplish as tumor inhibitors or oncogenes. Relatively, Oxidative stress is defined as the inequality between the creation of reactive oxygen species (ROS) and the body’s ability to detoxify the reactive mediators or repair the resulting injury. ROS and microRNAs have been recognized as main cancer promoters and possible treatment targets. Importantly, genotoxicity has been established as the primary reason for many diseases as well as several malignancies. The procedures have no obvious link with mutagenicity and influence the organization, accuracy of the information, or fragmentation of DNA. Conclusively, mutations in these patterns can lead to carcinogenesis. In this review article, we report the impressive and practical roles of microRNAs, oxidative stress, and genotoxicity in the pathobiology of cancer development in conjunction with their importance as reliable cancer biomarkers and their association with circulating miRNA, exosomes and exosomal miRNAs, RNA remodeling, DNA methylation, and other molecular elements in oncology.