“…With respect to echinoderms, considerable evidence supports the view that alx1 arose very early in echinoderm evolution through gene duplication, relatively quickly acquired a robust, biomineralization-related function, and was subsequently co-opted into the early embryo in echinoderm taxa that possess larval skeletons (echinoids and ophiuroids; Khor and Ettensohn, 2017;Shashikant et al, 2018). The biomineralizing cells of the ancestral echinoderm, which were likely of mesodermal origins, expressed alx1, ets1, erg, vegfr, and other components of a core skeletogenic program, as well as an assortment of more rapidly evolving biomineralization effector proteins (Gao and Davidson, 2008;Dylus et al, 2018;Erkenbrack and Thompson, 2019;Li et al, 2020). To draw inferences concerning the evolution of alx gene expression and function more deeply within Ambulacraria (echinoderms and hemichordates), it will be important to learn more about the single alx gene of hemichordates, including its pattern of expression, gene targets, and role in the formation of the small, calcareous skeletal elements of adult hemichordates (Cameron and Bishop, 2012) and to more precisely determine the embryological origins of the alx1-expressing cells of adult echinoderms, which are more relevant to the ancestral echinoderm condition than the more commonly studied larval forms.…”