Fault detection/diagnosis has become a crucial function of the battery management system (BMS) due to the increasing application of lithium-ion batteries (LIBs) in highly sophisticated and high-power applications to ensure the safe and reliable operation of the system. The application of Machine Learning (ML) in the BMS of LIB has long been adopted for efficient, reliable, accurate prediction of several important states of LIB such as state of charge, state of health and remaining useful life. Inspired by some of the promising features of ML-based techniques over the conventional LIB fault detection/diagnosis methods such as model-based, knowledge-based and signal processing-based techniques, ML-based data-driven methods have been a prime research focus in the last few years. This paper provides a comprehensive review exclusively on the state-of-the-art ML-based data-driven fault detection/diagnosis techniques to provide a ready reference and direction to the research community aiming towards developing an accurate, reliable, adaptive and easy to implement fault diagnosis strategy for the LIB system. Current issues of existing strategies and future challenges of LIB fault diagnosis are also explained for better understanding and guidance.