SUMMARY
We compared maximum aerobic capacity during forced exercise(V̇O2max) in hypoxia (PO2=14% O2), normoxia (21%) and hyperoxia (30%) of lines of house mice selectively bred for high voluntary wheel running (S lines) with their four unselected control (C) lines. We also tested for pleiotropic effects of the `mighty mini-muscle' allele, a Mendelian recessive that causes a 50% reduction in hind limb muscle but a doubling of mass-specific aerobic enzyme activity, among other pleiotropic effects. V̇O2max of female mice was measured during forced exercise on a motorized treadmill enclosed in a metabolic chamber that allowed altered PO2. Individual variation in V̇O2max was highly repeatable within each PO2, and values were also significantly correlated across PO2. Analysis of covariance showed that S mice had higher body-mass-adjusted V̇O2max than C at all PO2, ranging from +10.7% in hypoxia to +20.8% in hyperoxia. V̇O2maxof S lines increased practically linearly with PO2,whereas that of C lines plateaued from normoxia to hyperoxia, and respiratory exchange ratio (=CO2production/V̇O2max)was lower for S lines. These results suggest that the physiological underpinnings of V̇O2max differ between the S and C lines. Apparently, at least in S lines, peripheral tissues may sustain higher rates of oxidative metabolism if central organs provide more O2. Although the existence of central limitations in S lines cannot be excluded based solely on the present data, we have previously reported that both S and C lines can attain considerably higher V̇O2max during cold exposure in a He-O2 atmosphere, suggesting that limitations on V̇O2max depend on interactions between the central and peripheral organs involved. In addition,mini-muscle individuals had higher V̇O2max than did those with normal muscles, suggesting that the former might have higher hypoxia tolerance. This would imply that the mini-muscle phenotype could be a good model to test how exercise performance and hypoxia tolerance could evolve in a correlated fashion, as previous researchers have suggested.