Soil aggregates are the basic structural components of soil, which are important factors that can predict erosion resistance. However, few researchers have investigated the effects of forest conversion on the stability of soil aggregates, particularly in subtropical forests. In this study, soils from various depths (0 to 30 cm) were collected from four forest types (transformed from broadleaved forests (BMF) to combined coniferous broadleaved (CBMF), Chinese fir (FF), and bamboo forests (BF)) to determine the impacts of forest conversion on the physical and chemical properties of soil, water-stable soil aggregates, and aggregate-associated humic substances. The results showed that forest conversion had no effects on the soil’s physical properties, or the humic substances in bulk soil, but had significant effects on soil aggregates. In addition, the conversion of broadleaved forest to Chinese fir forest increased the soil stability, and to bamboo forest, decreased the soil stability. Finally, the soil’s physicochemical properties were closely related to aggregate-associated humic substances. In summary, specific forest management measures should be applied to strengthen the positive impacts and reduce the negative impacts associated with forest conversion.